
NAVAL POSTGRADUATE SCHOOL
Monterey, California

LJUL

THESIS

IMPLEMENTATION OF FUZZY INFERENCE SYSTEMS

USING NEURAL NETWORK TECHNIQUES

by

Billy E. Hudgins, Jr.

March, 1992

Thesis Advisor: Chyan Yang

Approved for public release; distribution is unlimited.

92-19036IIII I !III i 111111111111111 liD liii



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATIONIDOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

NOAb. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

av sgraduate -co (if apable) Naval Postgraduate School
I EC

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City. State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

&a. NAME OF FUNDINGISPONSORING 6b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Securiy Classification)
IMPLEMENTATION OF FUZZY INFERENCE SYSTEMS USING NEURAL NETWORK TECHNIQUES

968t VIPy Vugene, Jr.
(aa TYPp QREPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Monti, Day) 115.PAGECOUNT

aster s esis FROM. TO. 1992 March 46
16 SUPPLEMENTARY NOTATIOT1he views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse it necessary and identify by block number)

FIELD GROUP SUB-GROUP fuzzy inference, neural networks, adaptive training, gradient descent,
membership functions

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Fuzzy inference systems work well in many control applications. One drawback, however, is determining

membership functions and inference control rules required to implement the system, which are usually supplied
by 'experts'. One alternative is to use a neural network-type architecture to implement the fuzzy inference
system, and neural network-type training techniques to 'learn' the control parameters needed by the fuzzy
inference system. By using a generalized version of a neural network, the rules of the fuzzy inference system
can be learned without the assistance of experts.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
[3UNCLASSIFIED/UNLIMITED [] SAMEAS RPT. []DTIC USERS UNCLASSIFIED

? at, LEet F RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22cE BOLAr t, .,yan (408) 646-2266a

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

AJl other editions are obsolete UNCLASSIFIED
i



Approved for public release; distribution is unlimited

Implementation of Fuzzy Inference Systems
Using Neural Network Techniques

by

Billy E. Hudgins, Jr.
Lt, USN

B.S, Georgia Institute of Technology, 1986

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

March 1992

Author:

Approved by: Chy Z

Jon T. Butler, Second Reader

fy M.A. Morgan, Chairman
Department of Electrical and Computer Engineering

ii



ABSTRACT

Fuzzy inference systems work well in many control applications. One drawback,

however, is determining membership functions and inference control rules required to

implement the system, which are usually supplied by 'experts'. One alternative is to

use a neural network-type architecture to implement the fuzzy inference system, and

neural network-type training techniques to 'learn' the control parameters needed by

the fuzzy inference system. By using a generalized version of a neural network, the

rules of the fuzzy inference system can be learned without the assistance of experts.

Acoession For

NTIS GRA&I Wjo"'
DTIC TAB [3
Unannounced 0
Justificetion,

By
Distribut ion/
Availability Codes

iii Avail and/or
DIat Zpoola



TABLE OF CONTENTS

I. INTRODUCTION ............................. 1

II. CONNECTIONIST FUZZY INFERENCE SYSTEM ............ 2

A. GENERALIZED NEURAL NETWORK (GNN) ............. 2

B. IMPLEMENTATION OF THE GNN ................ 5

III. SIMULATION RESULTS OF THE GNN ................. 8

IV. CONCLUSIONS .............................. 11

APPENDIX A: INTRODUCTION TO NEURAL NETWORKS AND FUZZY

INFERENCE ........................ 12

A. NEURAL NETWORKS ........................ 12

B. FUZZY INFERENCE ......................... 14

APPENDIX B: MATLAB CODE FOR THE GENERALIZED NEURAL

NETW ORK ......................... 18

APPENDIX C: GRAPHICAL RESULTS FROM THE SIMULATION . . 23

REFERENCES ................................... 36

INITIAL DISTRIBUTION LIST ......................... 37

iv



LIST OF TABLES

3.1 APE VALUES FOR EXAMPLES 1,2, AND 3 ............. 9

3.2 MFLOP'S REQUIRED FOR SIMULATION RESULTS .......... 10

d' C.1 INPUT AND OUTPUT TRAINING DATA FOR EXAMPLE 1 ... 25

v



LIST OF FIGURES

2.1 A GNN Fuzzy Inference System .......................... 4

A.1 Generic Artificial Neuron ............................... 13

A.2 A Feedforward ANN ....... ........................... 14

A.3 Membership Functions for Systolic Blood Pressure ............... 15

C.1 Target Output For Example 1 ...... ...................... 26

C.2 Target Output For Example 2 ...... ...................... 26

C.3 Initial Membership Functions (Ex. 1, Two MF's) .............. 27

C.4 Final X Membership Functions (Ex. 1, Two MF's) ............. 27

C.5 Final Y Membership Functions (Ex. 1, Two MF's) ............. 27

C.6 Average Percentage Error (Ex. 1, Two MF's) ................ 27

C.7 Initial Membership Functions (Ex. 1, Three MF's) ............... 28

C.8 Final X Membership Functions (Ex. 1, Three MF's) ............. 28

C.9 Final Y Membership Functions (Ex. 1, Three MF's) ............. 28

C.10 Average Percentage Error (Ex. 1, Three MF's) ................. 28

C.11 Initial Membership Functions (Ex. 1, Four MF's) .............. 29

C.12 Final X Membership Functions (Ex. 1, Four MF's) ............. 29

C.13 Final Y Membership Functions (Ex. 1, Four MF's) ............. 29

C.14 Average Percentage Error (Ex. 1, Four MF's) ................ 29

C.15 Initial Membership Functions (Ex. 2, Two MF's) .............. 30

C.16 Final X Membership Functions (Ex. 2, Two MF's) ............. 30

C.17 Final Y Membership Functions (Ex. 2, Two MF's) ............. 30

C.18 Average Percentage Error (Ex. 2, Two MF's) ................ 30

C.19 Initial Membership Functions (Ex. 2, Three MF's) ............... 31

vi



C.20 Final X Membership Functions (Ex. 2, Three MFs) ...... . ... .31

C.21 Final Y Membership Functions (Ex. 2, Three MF's) ............. 31

C.22 Average Percentage Error (Ex. 2, Three MF's) ................. 31

C.23 Initial Membership Functions (Ex. 2, Four MF's) .............. 32

C.24 Final X Membership Functions (Ex. 2, Four MF's) ............. 32

C.25 Final Y Membership Functions (Ex. 2, Four MF's) ............. 32

C.26 Average Percentage Error (Ex. 2, Four MF's) ................ 32

C.27 Initial Membership Functions (Ex. 3, Two MF's) .............. 33

C.28 Final X Membership Functions (Ex. 3, Two MF's) ............. 33

C.29 Final Y Membership Functions (Ex. 3, Two MF's) ............. 33

C.30 Final Z Membership Functions (Ex. 3, Two MF's) ............... 33

C.31 Initial Membership Functions (Ex. 3, Three MF's) .............. 34

C.32 Final X Membership Functions (Ex. 3, Three MF's) ............. 34

C.33 Final Y Membership Functions (Ex. 3, Three MF's) ............. 34

C.34 Final Z Membership Functions (Ex. 3, Three MF's) ............. 34

C.35 Average Percentage Error (Ex. 3, Two MF's) ................ 35

C.36 Average Percentage Error (Ex. 3, Three MF's) ............... 35

vii



ACKNOWLEDGMENT

I would like to express my gratitude and appreciation to the faculty and staff

of the Electrical and Computer Engineering department for providing me with the

opportunity and encouragement to explore many exciting facets of electrical engineer-

ing. I would like to offer special thanks to Chyan Yang for his assistance and Jon

Butler for his advice. Also, I would like to thank Jyh-Shing Jang for supplying data

used in the simulations. Finally, I would like to thank my wife Cindy for her patience

during the compilation of this thesis.

VIII



I. INTRODUCTION

The recent emergence of artificial neural networks and fuzzy inference systems

have encouraged many designers to combine the two concepts into a single system

having characteristics superior to either system alone [Ref. 1, 2, 3, 4, 5, 6]. One

method of tying the two systems together is by using the learning capabilities of

an artificial neural network-type architecture (ANN) to describe and tune the mem-

bership functions and inference rules of a fuzzy inference system. Thus, by using

a connectionist approach, where the nodes function to implement parts of the fuzzy

inference paradigm, the expert needed to describe the control parameters can be elim-

inated. Thus, by using neural network training techniques, the designer is relieved of

the need for experts to delineate explicit rules governing the fuzzy inference system,

sincc the system itself is capable of defining these rules.

The association of neural network and fuzzy inference systems gives rise to

designs with very different topologies and functionalities. Therefore, to better un-

derstand how these two concepts can be merged, an implementation of a system

combining the two is described in Chapter II. The results of simulations using this

system are given in Chaptci III.

An overview of some of the concepts of neural networks and fuzzy inference

systems can be found in Appendix A. The MATLAB code to implement the system

discussed in Chapter II is given in Appendix B. Graphical results of the simulations

discussed in Chapter III are given in Appendix C.

I a i



II. CONNECTIONIST FUZZY INFERENCE
SYSTEM

The application of fuzzy inference systems for the control of systems, as well

as neural networks for the classification and identification of patterns, is well docu-

mrented [Ref. 7, 8, 9, 10). This chapter introduces the concept of combining these

two paradigms to provide a connectionist approach to implementing a fuzzy inference

svstem.

A. GENERALIZED NEURAL NETWORK (GNN)

One way to utilize the learning capabilities of a neural network is to teach a

control system the proper associations between inputs and outputs. However, the

level of interaction between the processing elements in the various layers is at such a

fundamental level that no exploitable information can be gathered from the param-

eters within the network, thus providing only a black box processing approach for

implementing the input/output relationships. On the other hand, a fuzzy inference

system allows a few simple rules to control a process with very good results. However,

the fuzzy system must be supplied with these rules, which are usually obtained from

.experts', either by careful observation of their actions, or by linguistic interpretation

of their actions.

For very complicated processes, rule extraction is inappropriate, either because

there is no expert to mimic, or because the actions of the expert are so complex that

they defy linguistic explanation. In this case, an alternative must be found.

One method of achieving the self-adjustment of rules in a fuzzy inference system

is suggested by Jang [Ref. 1]. A generalized network is set up which includes fuzzy

2



inference features. After it is determined how many membership functions the inputs

will be assigned, thereby determining the dimensionality of the network, a training

data set is used to adjust the parameters that determine the shape of these member-

ship functions, as well as the manner in which the rules will be combined to give the

overall results. Jang only conisiders MISO (multiple input, single output) cases, but

this is sufficient to describe many useful control situations.

Each layer in the generalized network provides nodes which take the outputs

from previous layers and provides inputs for succeeding layers. This architecture has

many similarities with feedforward artificial neural network (ANN) implementations,

and the functions exhibited by the nodes in each layer could be implemented with

subnets of ANN's [Ref. 11]. Nonetheless, the generalized implementation allows

direct access to the rules produced by the training of the network, which can be

exported to other, more standardized, implementations of fuzzy inference control

systems. Figure 2.1 gives an example representation of a generalized neural network

(CNN) with two inputs, one output, and two membership functions per input. Each

membership function represents a linguistic attribute for each input, in this case 'high'

and 'low.'

The following is a functional description of each of the layers in a GNN:

Layer 1 For every distinct input used in the system, a number of membership function
nodes are added. The output of these nodes represent the degree to which the
input belongs to the linguistic, or fuzzy, variable represented by that node. For
example, the Layer I nodes connected to each input might correspond to the
linguistic terms 'small' and 'large'. Thus, the outputs from each of these nodes
would indicate how well the input 'fit' within each of these categories. The
shapes of the membership functions are variable and parameters used to adjust
them are known as premise parameters, and are determined during the training
process. The function used to express the membership functions in this layer is

101 = 1(2.1)
+ [(.r-)2]b'

where x is the input value and {a,b,c} are parameters for the membership
function for a particular Layer I node.

3



7 1f

Figure 2.1: A GNN Fuzzy Inference System

Layer 2 The outputs of each of the Layer 1 nodes are combined with outputs from
the other Layer 1 nodes so that every combination of outputs from different
membership functions within groupings for a particular input are available at
the next layer. The output from the Layer 2 nodes represent the absolute firing
strength of a particular fuzzy rule made by combining the linguistic variables
from different inputs.

Layer 3 Each node in this layer represents a particular firing rule. The absolute firing
strength received from Layer 2 is normalized against the sum of absolute firing
strengths from all rules, and this value is sent to Layer 4.

Layer 4 The nodes in this layer weight the relative firing strength from the previous
layer by a biased combination of the input values, and passes this value on to
Layer 5. The functional description for the output of a node in this layer for
the example in Figure 2.1 would be

04 = w,, * (d * x + d, * y + do), (2.2)

where w, is the output from Layer 3, x and y are the inputs to the network,
and {d., d, do) are parameters that will be adjusted during the training process,
called consequence parameters.

Layer 5 All Layer 4 outputs are summed and sent through as the output of the
network.

The purpose of the entire network is to create a system whereby certain param-

eters can be adjusted so that an appropriate output will be realized for a given input.

These parameters are found in Layer 1 and Layer 4, and are adjusted using training

data that give the correct output for a given input vector. The manner in which these

4



parameters are actually adjusted, or 'trained,' involves the use of a gradient descent

algorithm that minimizes a squared energy error function between the correct 'tar-

get' output and the actual output of the network for several training samples. The

gradient descent method for training the parameters gives the connectionist fuzzy

inference system attributes similar to ANN's, which employ similar gradient descent

techniques utilizing a variant of this method called backpropagation for training.

B. IMPLEMENTATION OF THE GNN

The implementation of the GNN was coded using MATLAB, a high level lan-

guage ideally suited for scientific applications. The actual code is given in Appendix

B. The results of several simulations are given in Appendix C and explained in Chap-

ter 111.

The algorithm can be divided into two parts. The first is the calculation of

the outputs of the nodes holding the Layer I parameters constant and adjusting the

Layer 4 parameters. All of the input vectors are presented to the input layer, and

the output of all nodes up to Layer 4 are calculated. Using the built-in MATLAB

function pinv, which calculates the pseudoinverse of a matrix, the inputs to Layer 4

and the desired outputs of Layer 4, backtracked from the desired outputs, are used to

determine the Layer 4 parameters. Using these parameters, the outputs of the nodes

of the last two layers are determined. Thus, the Layer 4 parameters are optimized

for the entire training data set with the Layer 1 parameters held constant.

Furthermore, with the Layer 4 parameters held constant, the parameters in

Layer 1 are adjusted to minimize the error measure defined by Equation 2.3 for each

input vector, where E, is the error measure for the p-th input vector, Tp is the

corresponding desired output, and O' is the actual output.

EP= (T -O5)2. (2.3)

5



Thus, for a training data set containing P samples, there will be P component error

measures, and therefore the total error measure will be given by E = Ep E. In

order to minimize this total error measure, E, a gradient descent method was used

to determine the adjustment of the parameters in Layer 1.

In order to implement this gradient descent method, the manner in which E

changes with respect to each of the parameters in Layer 1 had to be determined.

Because the functional descriptions between the different layers and nodes were readily

available, the straightforward approach of taking partial derivatives of E with respect

to a, a particular Layer 1 parameter, was utilized.

The first step in determining this partial derivative was by invoking the chain

rule on Equation 2.3. The first two steps of this procedure are given in Equations 2.4

and 2.5.
dEp _ Ep aQ5
aa 905 E (2.4)

aEP -2(
- - o). (2.5)

a05

Thus continuing, 22 was determined by considering the structure of the GNN,

and taking partial derivatives to determine the relationships in the chain rule back to

Layer 1. Consequently, this backward determination of the error at each node back to

the input layer is similar to the backpropagation technique used for training ANN's,

although the partial derivatives must be determined at each layer since the nodes in

different layers may have different transfer functions.

801Nevertheless, eventually the chain rule gets to the point where z must be

determined. Although each node in Layer 1 will give a different result when a is a,

b, or c, the general relationships can be defined by Equations 2.6, 2.7, and 2.8.

0 p' =  a2- " 1 2 - 2 (2.6)
aa ab1+ [(--)2Ib) a

6



ao 1  
I / 1 2 b/...C2

-o a 1 + [( .)2]b (2.7)

Op1  = 2b I 2b) 2 2 (2.8)

In these equations, a,b,c are the Layer 1 parameters for a particular node, and

x is the input to that node.

Thus, with M known, the total error measure partial derivative can be deter-

mined,
ME P aEp9E = 8aE- (2.9)

p=1

Furthermore, the gradient descent algorithm updates a, the Layer 1 parameter,

after each training cycle, giving

aEa =-(2.10)

where r is a proportionality constant given by

k (2.11)

In Equation 2.11, k is the step size of the gradient descent algorithm. In the

GNN algorithm, k is adjusted by observing how the error measure E changes after

each iteration of training. Initially, k is set to unity, and increased by 10% if the error

measure decreases for four consecutive training cycles, and is decreased by 10% if the

error measure alternates increasing and decreasing twice in a row. These two cases

indicate that E is converging or oscillating, and thus k should be increased to speed

convergence, or decreased to prevent oscillation, respectively.

7



III. SIMULATION RESULTS OF THE GNN

Three sample problems were used to verify the performance of the GNN. The

first two problems had two inputs and a single output, while the third had three

inputs and a single output. The sample data used in the first example is listed in

Table C. 1, and it represented actual data taken from a fuzzy inference control system

designed in a conventional manner [Ref. 1]. Examples 2 and 3 were efforts to infer

the highly nonlinear functions given by Equations C.1 and C.2. The target output

surfaces for the first two examples are shown in Figures C.1 and C.2. Since the third

example described a four-dimensional hyperspace, it was not shown.

To provide flexibility in utilization, certain parameters in the algorithm for the

GNN can be altered. The most important parameter in the network configuration

is the number of membership functions in Layer 1. Although increasing the number

of membership functions increases the complexity of the overall network, the overall

performance is also increased. To show the difference that altering this parameter

makes, the three examples were trained using different numbers of nodes, and thus

membership functions, in the first layer. The results of these simulations are shown

in Figures C.3 through C.36.

The input for the first data set ranged from -10 to 10 and were selected at two

unit intervals. Thus, considering both inputs, a total of 121 samples were used. The

data for the second example used a similar partitioning scheme for the input data,

and also used 121 data points. The final example was sampled uniformly over all

three inputs in the range [1,6] in unit increments, for a total of 216 samples.

As a measure of how well the network learned the input/output relationships,

an error measure comparing the actual output and desired output, called the average

8



percentage error (APE), was used. Two slightly different computations of the APE

are given by Equations C.3 and C.4. The second version, APE3 , was used on the

third example, since it had no zero outputs. The first version, APE12, was applied to

the first two examples, since their output range included zero, and thus the second,

more accurate, version would not be suitable.

Comparing the results of simulations for the first data set using two, three, and

four membership functions (MF's) per input, the APE graphs show that for two MF's,

the APE stays greater than 28% past 200 iterations of the training data (Figure C.6).

For three membership functions, the APE figure is greatly reduced to around 2% for

200 iterations (Figure C.10). However, using four MF's per input, the APE index

dropped down to slightly above 0.2% (Figure C.14).

Similar results can be found for the second and third data sets, and Table 3.1

illustrates how the APE value is decreased for increased numbers of membership

functions. The table reflects the APE value after 200 iterations for the first two

sample data sets, and after 50 iterations for the third data set.

TABLE 3.1: APE VALUES FOR EXAMPLES 1,2, AND 3

_ 112 MF's f3 MF's 14 MF's
Ex.1 28.45 1.69 0.19
Ex.2 15.12 0.55 0.10
Ex.3 0.04 0.00

However, the enhanced performance of the network gained by increasing the

number of membership functions per input does have a cost. The computational

cost, whether measured in time or floating point operations, is the major limitation

of the GNN algorithm. Table 3.2 shows the number of millions of floating point

operations (MFlop's) that MATLAB reported during the running of the algorithm

9



TABLE 3.2: MFLOP'S REQUIRED FOR SIMULATION RESULTS

i2MF's 3MF's 4MF'sj
Ex.1 216.2 612.4 1,439.1
Ex.2 216.8 607.7 1,420.5
Ex.3 450.4 1,822.5

that gave the results in the previous table. It is readily apparent that the number

of membership functions should be minimized to reduce the comp -i ational cost, but

the accuracy of the network must be considered in determining this lower bound.

10



IV. CONCLUSIONS

Neural networks provide a very good method of identifying and classifying pat-

terns of data. Fuzzy inference provides a natural background by which control rules

can be expressed in a general sense. The use of neural network techniques in the

generation of the fuzzy inference control rules provides a means to implement the

fuzzy paradigm without interjection of an expert to describe its rules. However, by

generalizing the network to produce these self-generating rules, the complexity of the

training algorithm is increased, thereby increasing overall complexity, and incurring

increased computational costs. However, since the learning phase of the generalized

neural network should only be required once, or at least after long time intervals,

the increased training time might be a small price for the increased flexibility and

simplicity found in the fuzzy inference control architecture.

11



APPENDIX A: INTRODUCTION TO NEURAL
NETWORKS AND FUZZY INFERENCE

This appendix presents some of the fundamentals behind neural networks and

fuzzy inference systems that will enable better understanding of the preceding chap-

ters.

A. NEURAL NETWORKS

In an attempt to exploit the millions of years of evolution that nature has had to

develop the human brain and nervous system, scientists and engineers have attempted

to use some of the basic fundamentals of the networking of neural components within

the human body in order to produce artificial neural networks (ANN's). Although

an ANN is a very simplistic abstraction of a real neural network, say of the brain, it

has been used successfully in many areas [Ref. 12]. To say the least, the idea of using

a neural net paradigm that has had millenia to evolve has created much interest in

most branches of science.

The fundamental concept in an ANN is the idea of neurons connected together to

form a network, with inputs processed at one end, and output generated at the other.

Figure A.1 shows a generic artificial neuron. The makeup of this neuron consists of a

set of inputs from a previous layer of the network, a weighting operation on each of

these inputs, a summation of these weighted inputs, and a filtering operation through

a sigmoid function. Finally, this output is sent on to the next layer.

The sigmoid function acts as a normalization, or activation function, for the

summation of weighted inputs. Thus, the output of one node always falls within a

predetermined range. This is important since this allows a stabilizing effect to be

12



xl

Figure A.1: Generic Artificial Neuron

asserted on the network at all times.

Probably the most important aspect of an artificial neuron is the weighting of

the inputs to the neuron. Since these weights are variable, different assignments of

values to these variables cause the neuron to act in very different ways. In fact this

is the driving force behind the use of ANN- with a sufficient number of elements

within a neural network, any nonlinear input/output function can be 'learned' by

adjusting these weights.

The topology of connecting neurons, the shape of the activation function, and

the manner of adjusting the weights are far too numerous to describe within this

paper. For a more detailed introduction to neural networks see [Ref. 9].

However, the types of neural networks can be classified as feedforward networks,

which only have one-way connections between layers, feedback networks, which can

be fully connected. An example of a feedforward network with an input layer with

four inputs, one hidden layers with three nodes, and an output layer with four nodes

is shown in Figure A.2. The reason for the term 'hidden' is because a neural network

is usually considered a black box, and thus access is only available to the input and

13



Input Layer Hidden Layer Output Layer

neurons

Figure A.2: A Feedforward ANN

output layers. Therefore, all other layers in between are 'hidden' from the user.

One of the most widely used methods of updating weights on the input links to

the processing elements in the network is the backpropagation method. This method

uses an iterative gradient descent algorithm designed to minimize the mean square

error between the actual and desired outputs of the network [Ref. 91.

B. FUZZY INFERENCE

Fuzzy logic is an attempt to organize data and relationships between data in a

way that is intuitive and natural. The essential building block in fuzzy logic is the

concept of membership functions. Simply put, a membership function is a nonlinear

mapping of a variable into a likelihood that the value of the variable will be found in

the set of values that the membership function represents. An example of a mapping

of this type can be seen in Figure A.3 [Ref. 131. Here systolic blood pressure is

the variable to be mapped, and five different mappings of this variable, representing

five different membership functions, are shown. By convention, the output from a

membership function is usually expressed in the range of the closed interval [0,1].

Furthermore, each membership function is assigned a linguistic term that de-

14



In-&h 1a hw loo Io* norm.al too hISb . ch oo blab

10. ... ........
0.8
0 .4 . . . ........ .. ....... ....... . . . . . . . . . . . . . . . . . . . . . . . .

0.40 .2 .. . . . .. . . . . . .. . . ................ .. ... .. . .. .. .. . . . . . . . .

-0 50 IO 150 200 20
Blood lpfU.mz

Figure A.3: Membership Functions for Systolic Blood Pressure

scribes the relationship between the set of values represented by that membership

function and those of all other membership functions under consideration. In this

example, the linguistic terms applied to the input variable of systolic blood pressure

are 'normal', 'too high', 'too low', 'much too high', and 'much too low.' The output

of the membership functions for a certain value of the input variable relates how well

that value of the variable 'fits' the linguistic term that represents each membership

function. A membership likelihood value close to zero indicates that the input value

has a low likelihood of belonging to the set of values that best describes the linguistic

term representing the membership function. A likelihood value close to one would

indicate a high degree of association of the input value with the set of values that

best describe that linguistic variable.

As an example, a systolic blood pressure of 125 would have a likelihood very close

to one for the linguistic term 'normal', indicating a high correlation between a pressure

of 125 and a 'normal' pressure. On the other hand, a pressure of 100 would have a

likelihood of 0.5 for both the linguistic terms 'too low' and 'normal'. This indicates

that, for this example, a systolic blood pressure of 100 could be diagnosed as either

15



'too low' or 'normal' with equal likelihood. Obviously, there is some arbitrariness as

to the shape and placement of these membership functions, and indeed this has been

a disadvantage in implementing fuzzy logic controllers [Ref. 7, 81.

A more abstract interpretation of membership functions is that an arbitrary

variable- such as current from an alternator, temperature of a heat sink, or weight

of the contents of a variable ballast tank- can be represented by several overlapping

linguistic, or fuzzy, terms. For each value of the input variable, which is continuous, a

value in the range 10,1] is assigned to each of the linguistic terms as a measure of the

relationship that the input has to that linguistic term. So, instead of comparing the

value of the input variable, for example, as either 'warm' or 'cool', the input is said

to have the attribute 'warm' to a certain degree, and to have the attribute 'cool' to

a certain degree. So, for a temperature of 25"C, the membership value in the sets for

'warm' and 'cool' might be 0.5 each, but for the linguistic term 'room temperature',

the output would be most likely one. All linguistic terms, and thus the membership

functions they represent, provide a response for all values of the input variable, even

though that response may be zero.

The second fundamental concept in implementing a fuzzy inference system is

the idea of if-then statements, or inference rules. This is the method by which the

system is able to effect the control laws that allow plant parameters to be maintained.

The concept of if-then statements as decision makers is common, especially in expert

systems and computer algorithms. However, for a fuzzy inference system there are

several rules that must be considered at one time, and the output is determined by

considering the overall effect of all rules taken at once.

The most common method of implementing the if-then rules is by considering

methods used in Boolean logic and find similar functions that are appropriate in fuzzy

logic. For the statement , " If U is A and V is B then W is D," the operation of the

16



premise 'if', the conjunction 'and', and the implication 'then', must be implemented

with fuzzy logic functions so that the intent of the overall implication will still be

intact. There are several methods of constructing these functions [Ref. 14], but

the most widely used treat the 'and' operation as a min(x,y), the 'if' premise as a

membership operation, and the 'then' implication as a center of moments operation.

A more detailed introduction to fuzzy logic and fuzzy inference control systems

can be found in [Ref. 8].

17



APPENDIX B: MATLAB CODE FOR THE
GENERALIZED NEURAL NETWORK

The MATLAB code for the implementation of the GNN of Chapter 11 follows.

Also included are the subfunctions that the main program calls.

clear; cig;

%. Generalized Neural Network

% Implementation of an algorithm suggested by Jang. Three data sets
%are available, ji.dat, j2.dat, and j3.dat, corresponding to the

%. examples used in Jangls paper.

% Change the f ollowing parameters depending on desired topology:

load j3.dat; %May be ji.dat, j2.dat, or j3.dat
T = P3; %Local variable
M = 2; %Number of membership functions per input
epochs =200; %Number of training iterations using all data

%. in a batch mode

%. Determine all other parameters to be used and define some variables
[PE) = sizeCT); %P is number of samples, and..
I N - 1; % N is the number of inputs.
IN = TC:,1:N); %Training inputs to the network
OUT = T(:,N+I); %Actual output
Li = 1*M; %Number of nodes in the first layer
L2 = MN; %Number of nodes in layers 2,3, and 4.
I = ones(I.Li); %Vector used in the training phase
kk = 1; %Step-size parameter for updating premise parameters
Keep = lO0eones(i,5);%Vector holding current past values of kk

% Determine initial premise parameters used in the membership functions
for i=I:I,

for k=I:N,
Prems~i.Ci-i)*M+k) =Cmax(IIC:,i))-innINC:,i))/CM-i)).
PremsC2,(i-1)*M+k) = 2;
Prems(3,(i-i)*M+k) = iCC:i)(-smaCI:i)iCI(i)/(-;

end;
end;

18



% Store intial, values of premise parameters
Initrems = Prems(:,I:N);

% Construct input vector
for i=1:1,

for k1I:N,
InPrems(:.(i-1)*K+k) = I(,)

end;
end;

% Construct matrix used to determine Layer 2 inputs
for n1I:L2,

for m=1:1,
check(n,u) =forrm(-)N1r).0111 r-)

end;
end;

%. Start iteration for batch processing
%. Part One: Determine forward values
for t = :epochs
f or i = 1:P %Cycle through all samples of the input

% Layer One output
O1(i,:)=I./(I+(((InPreus(i,:)-Prems3:))./Pres~l:)).-2).-Prems(2.:));

%. Layer Two output
02(i,:) = ones~l,L2);
for n = 1:L2,

for m = 1:1,
02Ci,n) = 02(i,n).*OI~i,check~n,m));

end;
eand ;

%. Layer Three output (weight matrices for the nine rules)
Nsum(i,l) = sumCO2(i.:)');
03(i,:) =i/Nsum~i~i) * 02(i,:);

end;

%I Determine consequence parameters
A = [;
for k = 1:L2

for m = 1:N+1,
TT(:,m) = 03C:,k);

end;
* A = [A TT.*(II ones(T(:,1))]J;

end;
D = pinv(A) eOUT;

* for k = 1:L2
Coneq(:,k) =D((k-l)*(NI)+1:k*(N+1),1);

end;

19



%. Layer 4 and 5 outputs
for i=1:P,

04(i.:) =03Cj,:).*(EIN~i,1:I) iJ*Consq);
05(i,1) s um(04(i.:)');

end;

%. Part Two: Hold consequence parameters and update premise parameters
for p=1:P,

for i=1:Ll,
dOI(i.:) = (deriva(PreasC:,i),lnPrems(p~i)) ...

derivbCPrems(: ,i)XInPreaa(p,i)) derivc(Preas(: ,i).InPreuu(p~i))J;
end;
d02 = zeros(L2, 3*L1);
for i1l:L2,
for c=1:L1.

if (member(check(x. :),c)),
for v=1:3,
dO2Ci.(c-l)*3+v) = 1;
for n=1:I,
if (check~i n)==c),

dO2Ci,(Cc-l)*3+v)=d02(i,(Cc-l)*3+v)*dOl~c~v);
else

d02Ci,(Cc-l)*3+v)=dO2Ci, Cc-l)*3+v)*Ol~p.check(i.n));
end;

end;
end;

end;
end;

end;
disun sum~dO2);
for i=I:L2,

K~i) = [II~p,:) 1)eConsqC:.i);
for c=1:L1,
for v=1:3,

d03(i, (c-l)*3+v)=l/Nsum(p, 1)*d02(i. (c-l)*3+v) ...
-1/(Isum(p,l)-2)*02(p.i)*dlsua(1.(c-1)*3+v);

dO4Ci, (c-l)*3+v)=K~i)*do3(i. (c-1)*3+v);
end;

end;
end;
dOS = sum~dO4);
dEp(p,:) = -2*COUT(p,1)-0S(p.1))*dOS;

end;

% Determine parameters to update promise parameters
dE =sua~dEp)

eta kk/sqrt~dE*dE')
dalpha = -etaedE

for i1I:L1,

20



for c=1:3,
dalf(i~c) = dalpha(l,(i-l)*34c);

end;
end;

Proe = Press + dalf '; Y.lUpdate

%. Update step-size parameter
Erreas = (OUT-05) '*(OUT-O5); %Squared error
Keep = CKeep(2:5) ErrffeasJ;

%Increase step-size parameter it Erreas decreases four times consecutively
if CKeep(l) > Keep(2)),
if (Keep(2) > Keep(3)),
if (Keep(3) > Keep(4)),
if (Koop(4) > Keep(S)),
kk= .*k

end;
end;

end;
end;

% Decrease parameter if Erreas oscillates f or two cycles
if (Keep(l) > Keep(2)),
if(KeepC2) < Keep(3)).

if(Keep(3) > Keep(4)),
if (Keep(4) < Keep(5)).
kk = O.9*kk;

end;

end;
end;

end;
if (Keep~l) < KeepC2)),

ifCKeepC2) > Keep(3)),
if(Keep(3) < Keep(4)),
if (Keep(4) > KeepC5)),
kk = O.9*kk;

end;
end;

end;
end;

%. Determine how well system is performing
if (sign~max(OUT))==sign(minOUT))), %.Range of output without zero

APEWt = sum~absCOUT-05) ./absCOUT))*100/P
else %Range of output with zero

S APEWt= sum(absCOUT-OS))/sum(absCOUT))*100
end;

end;

21



% Functions Called by the Above Main Program

function y a derivaCPP,x)
% Derivative of a first layer node urt a.

a =PP(1);
b =PP(2);
c = PP(3);
y = *l+(xc/)2-)(2)((-)a-)(l)(xc/)2ab

function y = derivbCPP,x)
%. Derivative of a first layer node urt b.

a P()
a = PP(2);

c, = PP(3);
x x + 1.-1o;
y =real( -2*logC(x-c)/a)*C(x-c)/a)2)-b*C+C(x-c)/a)2)-b)(-2));

function y = derivc(PP,x)
%. Derivative of a first layer node wrt c.

a PO)
a = PP(2);
c = PPM2;

x = x + 1e-10;

y = 2*C1+CC(x-c)/a)-2)b)C-2)*C(x-c)/a)2)b-)*C-c)/a)*b/a);

function y~memberCA .b)
%. Function used to determine if the element b is
%. in the vector A.

y=0;
for i1 ~lengthCA),

it (AWi ==b)

end;
end;

22



APPENDIX C: GRAPHICAL RESULTS FROM
THE SIMULATION

The following are the results for three examples used to illustrate how well

the GNN program works. The first example uses as input data the raw data given

in Table C.1. This data represents the output of an actual fuzzy control system

that was designed by an expert [Ref. 1]. The shape of the target output is given

in Figure C.1. The data was used for three different setups of the GNN, each one

differing by the number of membership functions used for each input in the first layer.

Runs using two, three, and four membership functions per input were verified and

the final adjusted membership functions are shown. A measure of the error between

the desired output and actual output in the form of an Average Percentage Error is

also given. The shape of the initial membership functions are somewhat arbitrary,

and were picked to give the most coverage to the input data.

The second example is an attempt to learn the input/output relationship given

by Equation C.1. Similar to the first example, three different setups for the GNN

were used. Results for these runs are given in Figures C.15 through C.22.

z= (3exp( -)-1).15.tanh()+ (4+exP(-)) 8"sin (x+4)'- (C.1)

The final example involves three inputs and a single output with the relationship

given by Equation C.2. Only two setups of the GNN were used. The results of the

training of the membership functions are shown in Figures C.31 through C.36. Since

this example involes four dimensions, the actual target surface cannot be shown.

output = (1 + X0.5 + y-1+ z-1.5) 2  (C.2)

23



The error measure for all examples was an Average Percentage Error (APE) and

is given by either Equation C.3, for the first two examples, or by Equation C.4 for

the last example'. In these equations, P is the total number of training data samples.

APE1, 2 - = I(OUTPUTdaued - UTPUTjaesid. 100%. (C.3)
I = J P=T IOUTPUTdesTdL

APE3  IOUTPVTesi,.d - OUTPUTct,,, 100%. (C.4)APE =-OUTPUTdei,.d I

'Which equation was used depended on the range of the output. If the output range included zero,

as in the first two examples, the second equation was inappropriate, due to a possible singularity in
the denominator. However, for other cases, the second equation would give a more accurate measure
of actual error performance, and thus was used for the third example.

24



TABLE C.A: INPUT AND OUTPUT TRAINING DATA FOR EXAM-
PLE 1

X Input Y Input Output X Input Output

-10.0000000000 -10.0000000000 -46.9562412241 0.0000000000 2.0000000000 -28.5742541135
-10.0000000000 -8.0000000000 -12.0169721617 0.0000000000 4.0000000000 -19.2672215261
-10.0000000000 -6.0000000000 .2.1875345706 0.0000000000 6.0000000000 -14.5761498363
-10.0000000000 -4.0000000000 -5.9453743885 0.0000000000 8.0000000000 -17.1652439776
- 10.0000000000 -2.0000000000 -13.7846470479 0.0000000000 10.0000000000 -26.2515682937
-10.0000000000 0.0000000000 -22.5508919169 2.0000000000 -10.0000000000 -27.6106521916
- 10.0000000000 2.0000000000 -29.756400578 2.0000000000 -8.0000000000 -14.1081409823
-10.0000000000 4,0000000000 -16.6985904620 2.0000000000 -6.0000000000 -11.9587373160
-10.0000000000 6.0000000000 -1.6064559431 2.0000000000 -4.0000000000 -14.673531628"
-10.0000000000 8.0000000000 4.6525359660 2.0000000000 -2.0000000000 -18.5134541779

-10.0000000000 10.0000000000 -4.8858288195 2.0000000000 0.0000000000 -22.3774422146
-80000000000 - 10.0000000000 -41.4493837739 2.0000000000 2.0000000000 -24.7828536400
-8.0000000000 -8.0000000000 -9.1956603788 2.0000000000 4.0000000000 -14.6"12513476
-8.0000000000 -6.0000000000 -0.6517689562 2.000000000 6.0000000000 -9.5725257096
-8.0000000000 -4.0000000000 -4.7272998310 2.0000000000 8.0000000000 -12.0482146156
-.80000000000 -2.0000000000 -12.5434162388 2.0000000000 10.0000000000 -21.0165360901
-8.0000000000 0.0000000000 -21.2002614155 4.0000000000 -10.0000000000 -16.4446809784
-8 0000000000 2.0000000000 -28.4892287464 4-0000000000 -8.0000000000 -5.9262193228
-8.0000000000 4.0000000000 -17.7389693395 4.0000000000 -6.0000000000 -5.3133096070
-8 0000000000 6.0000000000 -4.6744935218 4.0000000000 -4.0000000000 -8.5339980452
-8 0000000000 S.0000000000 06979161170 4.0000000000 -2.0000000000 -12.5025954602
-8 0000000000 10.0000000000 -8.2415625506 4.0000000000 0.0000000000 -16.3697706307
-6 0000000000 -10 0000000000 -36.3992821301 4.0000000000 2.0000000000 -18.658715519
-6 0000000000 -8.0000000000 -6.9164981277 4.0000000000 4.0000000000 -6.9513989790
-6 0000000000 -6 0000000000 0 3638556988 4.0000000000 6.0000000000 0.9403010692
-60000000000 -4.0000000000 . -3.9524544648 4.0000000000 8.0000000000 0.9988191873
-6 0000000000 .2.0000000000 -13 6520872764 4.0000000000 10.0000000000 -7.1112553691
-6 0000000000 0 O000000000 .200993020579 6.0000000000 -10.0000000000 -11.8954606721
-6 0000000000 2 0000000(C .2? 3519710873 6.0000000000 -8.0000000000 -. 15T1426971
-6 0000000000 4 0OO0OOOOC -16 7093080582 6.0000000000 -6.0000000000 1.1110315051
-6 0000000000 6000000000C .? 6777917550 60000000000 .4.0000000000 .1.8670036149
-6 0000000000 a 000000000C -3 30349934671 6.0000000000 -2.0000000000 -5.7410877324
-6 0000000000 0 000000000( 11 7113843694 6.0000000000 0.0000000000 .9.5363921647
-4 0000000000 10 000000000C 32 2385453040 60000000000 2.0000000000 -11.4318942123
-4 0000000000 -8 00000000 6901860757 6.0000000000 4.0000000000 5.0091276040
.4.0000000000 -6 00000000C 0 3703069449 6.000O0000000 6.0000000000 19.1795514756
-4.0000000000 -4 000OOO0C .4 0373987614 6.0000000000 8.0000000000 24.003886"997
.4.0000000000 -2 00000000N .22) 4395860949 6.0000000000 10.000000000 16.7180909374
.4.0000000000 0 000000000C 19 4828305507 8.0000000000 -10.0000000000 -14.4758756797
-4 000000000 2.0000000000 -26 4668541073 8.0000000000 -8.0000000000 1.4387587193
-4 0000000000 4.0000000000 -19 5378103128 8.0000000000 -6.000000000 4.9242408368
-4 0000000000 6 0000000000 -10.5466428752 8.0000000000 -4.0000000000 2.7399064339
-4 0000000000 8.0000000000 -7.3891898670 8.0000000000 -2.0000000000 -0.8525463618
-4 0000000000 10 0000000000 - 15.3966241994 6.0000000000 0.0000000000 -4.4829829884
-2 0000000000 -10 0000000000 -34,3541216014 8.0000000000 2.0000000000 -5.7233342568
-20000000000 -8 0000000000 -11 3438466194 8.0000000000 4.0000000000 17.2356958553
-2 0000000000 -6 0000000000 -6 05w6112219 8.0000000000 6.0000000000 38.2625801935
-2 0000000000 -4 0000000000 -8 6148258808 8.0000000000 6.0000000000 47.3029247940
-2 000000000 -2 00000(r^.T .;S 6372485C06 8.0000000000 10.0000000000 39.7872388333
-2 0000000000 0 0000000000 -22 2375784549 10.0000000000 -10.0000000000 -19.124691135
-2 0000000000 2 0000000000 -27 558404801 10.0000000000 .8.0000000000 1.1977401978
-2 000000000 4 0000000000 -20 8442158113 10.000000000 .6.0000000000 ?.0189003305
-2 0000000000 6 0000000000 -14 1612311753 10.0000000000 -4.0000000000 5.6T00496239
-2 0000000000 8 0000000000 -13 6787441341 10.0000000000 -2.0000000000 2.3752044148
.2 0000000000 10 0000000000 -21 8877559979 10.0000000000 0.0000000000 -1.0754895047
0 0000000000 -20 000000W000 -37 4851910306 10.0000000000 2.0000000000 -1.6192367099
0 0000000000 -8.0000000000 -19 3801366601 10.0000000000 4.0000000000 27.6685627469
0 0000000000 -6 0000000000 -15.113584169 10.0000000000 6.0000000000 54.3576306394
0 0000000000 -4 0000000000 -A? 4100512S 10.000000000 8.0000000000 6.1873838293
0 0000000000 -20000000000 -21 4305474813 10.0000000000 10.0000000000 57.6934361793
0 0000000000 0,0000000000 -25,6746105893

25



Target Output For Example I

-40-

10
110

101

01

Y Inpt -1 -10X Input

Figue CA Taret utpu ForExamle

Figur C 2Target Output For Example 2

50 . ... 26



OLI V

U 10U

a. 040 10 a 3

0.3 0

0.03

0.1 0.n1e

Figure 0.3: FinialX Membership Figure 0.5: Finrale YerMembaeri
Functions (Ex. 1, Two MF's) rocto (Ex. 1, Two MF's)

0.27



V. 17

UU

U U

S -5 -W -5 4 00 Is I D 1 -IS -3 -5 0 S w is 30
047J YomJ

Figure C.7: Initial Membership Figure C.9: Final Y Membership
Functions (Ex. 1, Three MF's) Functions (Ex. 1, Three MF's)

0.9

014

0.7

0.1

UMUM

Figur C.:FnlXMmesi iueC1:AeaePretg

28



02 021

a -15 -10 -5 0 S 1O 15 V .15 -a -1 a 5 a Is a

Figure C.11: Initial Membership Figure 0.13: Final Y Membership
Functions (Ex. 1, Four MF's) Functions (Ex. 1, Four MF's)

01

2
; 0.5

10.4

0.3

0.2

01I

-1 - -5 0 5 10 I5 a 30 IN No.. . . .

XWJT MlAMIS

Figure C.12: Final X Membership Figure 0.14: Average Percentage
Functions (Ex. 1, Four MF's) Error (Ex. 1, Four MF's)

29



lei 10i

nCA'

02 2

0.1 Wi

Figure C.15: Initial Membership Figure C.17: Final Y Membership
Functions (Ex. 2, Two MF's) Functions (Ex. 2, Two MF's)

0.6

0.37

..

30



U U

17 Vi

II W1

a* i .1 0 -S .5 5 10 is zS 45- -w -5 0 i 5 a IS a
MIT Y~F

Figure C.19: Initial Membership Figure 0.21: Final Y Membership
Functions (Ex. 2, Three MF's) Functions (Ex. 2, Three MF's)

0.17

07

0.15

031



U U

0. di

02

A -i -30 -5 0 S 10 is .15 -is *s 0 5 0 15 X

Figure C.23: Initial Membership Figure C.25: Final Y Membership
Functions (Ex. 2, Four MF's) Functions (Ex. 2, Four MF's)

0.1 4

0.7

0.6

I0.4

0.1 2.5

0 I

-is .30 -1 0 S to Is V V 0 0 U Is 5wK InU

Figure 0.24: Final X Membership Figure 0.26: Average Percentage
Functions (Ex. 2, Four MF's) Error (Ex. 2, Four MF's)

32



~~U.

IIIIII

I 02

o l-

I Il /

-.4 -2 0 2 4 6 S N 0 4 4 -2 0 2 4 6 1 1 12
wirT YSIR "

Figure C.27: Initial Membership Figure C.29: Final Y Membership
Functions (Ex. 3, Two MF's) Functions (Ex. 3, Two MF's)

o,1 5.1

0.7 I

iS

16 i 16.

4 -2 5 2 4 6 1 3 12 4 -2 0 2 4 0 1 a 1a
X W I IIK'

Figure C.28: Final X Membership Figure C.30: Final Z Membership
Functions (Ex. 3, Two MF's) Functions (Ex. 3, Two MF's)

33



i I

10.2 OA

1 4 . 2 0 2 4 6 1 N 0 .44 0 2 4 6 1 a a

Figure C.31: Initial Membership Figure C.33: Final Y Membership
Functions (Ex. 3, Three MF's) Functions (Ex. 3, Three MF's)

0. 09

0.00.

0.7 17

10.4 1.

0.3.1

. W

4 2 0 2 4 6 9 10 124 4 2 4 6 S 30 12

Figure C.32: Final X Membership Figure C.34: Final Z Membership
Functions (Ex. 3, Three MF's) Functions (Ex. 3, Three MF's)

34



13 am

11 am

35



REFERENCES

1. Jyh-Shing Jang, "Fuzzy Modeling Using Generalized Neural Networks and
Kalman Filter Algorithm," AAAI 1991, pp. 762-767.

2. Hideyuki Takagi and Isao Hayashi, "NN-Driven Fuzzy Reasoning," International
Journal of Approximate Reasoning, Vol. 5, 1991, pp. 191-212.

3. Ching-Teng Lin and C.S. George Lee, "Neural-Network-Based Fuzzy Logic Con-
trol and Decision System," IEEE Trans. Comp., Vol. 40, No. 12, December 1991,
pp. 1320-1336.

4. Ronald R. Yager, "Modeling and Formulating Fuzzy Knowledge Bases Using
Neural Networks," Technical Report #MII-1111, Iona College, New Rochelle,
NY, 1991.

5. Chuen-Chien Lee, "A Self-Learning Rule-Based Controller Employing Approxi-
mate Reasoning and Neural Net Concepts," International Journal of Intelligent
Systems, Vol. 6, 1991, pp. 71-93.

6. Ichiro Enbutsu, Kenii Baba, and Naoki Hara, "Fuzzy Rule Extraction From a
Multilayered Neural Network" In IEEE INNS International Joint Conference on
Neural Networks edited by I.R. Goodman et al., Vol II, pp. 461-465.

7. Michio Sugeno, "An Introductory Survey of Fuzzy Control," Information Sci-
ences, Vol. 36, 1985, pp. 59-83.

8. Chuen-Chien Lee, "Fuzzy Logic in Control Systems: Fuzzy Logic Controller-
Part I & II," IEEE Trans. Syst., Man, and Cybern., Vol. 20, No. 2, 1990, pp.
404-435.

9. Richard P. Lippman, "An Introduction to Computing with Neural Nets," IEEE
ASSP Magazine, April 1987, pp. 4-22.

10. NeuralWare, Inc., Neural Computing, 1991.

11. G. Cybenko, "Continuous Value Neural Networks With Two Hidden Layers Are
Sufficient," Math Contr. Signal and Sys., Vol. 2, 1989, pp. 303-314.

12. Steven F. Zornetzer, Joel L. Davis, and Clifford Lau (eds.), An Introduction to
Neural and Electronic Networks,, Academic Press:San Diego, 1990.

13. Dong-Hui Li and Francois E. Cellier, "Fuzzy Measures in Inductive Reasoning,"
In Proceedings of the 1990 Winter Simulation Conference, 1990, pp. 527-538.

14. M.M. Gupta and J. Qi, "Connectives (And,Or,Not) and T-Operators in Fuzzy
Reasoning," In Conditional Logic in Expert Systems, 1991, pp. 211-227.

36



INITIAL DISTRIBUTION LIST

No. of Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Chairman, Code EC 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5002

4. Professor Chyan Yang, Code EC/Ya 2
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

5. Professor Jon T. Butler, EC/Bu 2
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

6. Lt. Billy E. Hudgins 2
914 Ninth Avenue
Albany, GA 31701

3

37


